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A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed
by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow.
In this model, the hydrodynamic fields of a classical continuum are supplemented
by the couple stress and the intrinsic angular velocity fields. The balance of angular
momentum, which is satisfied implicitly in a classical continuum, must be enforced
in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and
the angular velocity of a material point may differ from half the local vorticity. An
important consequence of treating the granular medium as a Cosserat continuum is
that it incorporates a material length scale in the model, which is absent in frictional
models based on a classical continuum. Further, the Cosserat model allows deter-
mination of the velocity fields uniquely in viscometric flows, in contrast to classical
frictional models. Experiments on viscometric flows of dense, slowly deforming granu-
lar materials indicate that shear is confined to a narrow region, usually a few grain
diameters thick, while the remaining material is largely undeformed. This feature
is captured by the present model, and the velocity profile predicted for cylindrical
Couette flow is in good agreement with reported data. When the walls of the Couette
cell are smoother than the granular material, the model predicts that the shear layer
thickness is independent of the Couette gap H when the latter is large compared to
the grain diameter dp. When the walls are of the same roughness as the granular
material, the model predicts that the shear layer thickness varies as (H/dp)

1/3 (in the
limit H/dp � 1) for plane shear under gravity and cylindrical Couette flow.

1. Introduction
The slow flow of densely packed granular materials is a subject of considerable

importance, primarily due to the obvious commercial and technological implications
resulting from a better understanding of granular flows. Granular materials are
transported and processed in a variety of industrial operations, and furthering our
knowledge of their rheology opens up the possibility of improving the design of these
processes. The phrase ‘slow flow’ denotes the regime of where the density is high and
the deformation rate low, so that momentum is mainly transferred during sustained
contact between the grains, and the stress generated by grain collisions is insignificant.
If we define the ratio of the stress arising from grain collisions to the total stress,
R ≡ ρpd

2
pγ̇

2/N, where ρp and dp are the density and mean diameter of the grains, γ̇
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is the nominal shear rate and N is the total (normal or shear) stress, the slow flow
regime corresponds to R � 1. This is the case in many terrestrial flows, where gravity
consolidates the medium to a state where sustained frictional contact occurs between
the particles.

Experimental observations suggest that the drag force exerted by a granular medium
when it flows slowly past a solid surface is not steady, but fluctuates in time (Budny
1979; Tüzün & Nedderman 1985; Munch-Andersen & Askegaard 1993; Nasuno
et al. 1998; Albert et al. 2000). The oscillations diminish in magnitude as the flow
velocity increases. In some cases, the amplitude of the oscillations is of the same order
of magnitude as the mean value. This phenomenon is referred to as stick-slip. The
frequency of the oscillations depends on the relative velocity between the granular
material and the surface, and also on various other factors. In some of the studies
cited above, the frequency was in the range of 0.05–100 Hz, and the relative velocity
was in the range of 5 µm s−1–10 mm s−1.

In this work we do not address the issue of stick-slip; rather we propose a
hydrodynamic model for slow granular flows that can predict only the time-averaged
values of the stress and velocity fields. It is assumed that the time-averaging is over a
large number of stick-slip events. A prominent feature of the time-averaged stress in
slow flow is its rate independence. For instance, Albert et al. (1999) found the drag
force F̄ on a vertical rod dipped into a rotating bed of glass beads to be independent
of the velocity, for velocities in the range of 0.1–1.5 mm s−1. Tardos, Khan & Schaeffer
(1998) sheared granular materials in the annular gap of a vertical Couette cell, and
measured the torque required to rotate the inner cylinder at a constant speed. For
speeds in the range of 2.5–50 cm s−1, which correspond to nominal shear rates in the
range of 2–40 s−1, F̄ decreased very slightly as the shear rate increased; at higher
shear rates, F̄ increased with the shear rate.

As a first approximation in modelling the above experiments, we may assume that
the drag force does not vary with the velocity. Within the framework of continuum
mechanics, this is equivalent to the assumption that the constitutive equation relating
the stress to the rate of deformation D is unaffected if all components of D are changed
by a common factor. This is termed rate-independent behaviour. Rate-independent
models for slow flow, which are usually based on concepts in metal plasticity and
soil mechanics, have been used with some success for flow in hoppers and bunkers
(Brennen & Pearce 1978; Cleaver & Nedderman 1993; Michalowski 1987).

However, these models fail for viscometric flows, in which the direction of variation
of the velocity is orthogonal to the direction of flow. Experimental observations of
viscometric flows, such as flow through vertical channels (Natarajan, Hunt & Taylor
1995; Nedderman & Laohakul 1980), or shear in a cylindrical Couette cell (Tardos
et al. 1998) show large portions of the material not suffering sustained deformation,
and shear occurring only in thin layers (Gudehus & Tejchman 1991; Nedderman
& Laohakul 1980). Moreover, the thickness of the shear layer is influenced by the
nature of the boundaries; it is less when the flowing medium is confined by smooth
walls than in the case of rough walls (Nedderman & Laohakul 1980). In contrast,
conventional plasticity-based models predict no shear layers (Mohan, Nott & Rao
1997; Tejchman & Wu 1993), with the entire region behaving like a rigid block and
slipping relative to the walls.

Owing to the occurrence of narrow shear layers, the nominal shear rate differs
significantly from the actual shear rate, making it difficult to interpret rheological
data. A theory that predicts the extent of the locked, or ‘plug’, region and the velocity
field within the shear layer would therefore be useful.
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The inability of frictional models to determine the velocity field in viscometric
flows has been attributed to the absence of a material length scale in their constitutive
equations (Mühlhaus 1986, cited in Mühlhaus & Vardoulakis 1987). An attempt
to correct this deficiency of the classical frictional models was recently made by
Mohan, Nott & Rao (1999). They modelled the granular medium as a Cosserat
continuum, which incorporates a material length scale in the constitutive equations.
Cosserat plasticity models have previously been applied to problems in granular
flow (Mühlhaus 1989; Mühlhaus & Vardoulakis 1987; Tejchman & Gudehus 1993;
Tejchman & Wu 1993, 1994), but the models in these studies are posed in terms of
strain increments as they only address unsteady flows, and no results are reported for
steady flow.

In this work, we use the Cosserat model of Mohan et al. (1999) to examine steady
shear between parallel plates and concentric cylinders. Unlike a classical continuum,
a Cosserat continuum involves two additional field variables, namely the intrinsic
angular velocity vector ω, and the couple stress tensor M . The former represents the
local rate of spin of material elements, and the latter represents the couple per unit
area exerted by the medium. Hence the mass and linear momentum balances must
be supplemented by the angular momentum balance relating the angular velocity
vector, the stress tensor and the couple stress tensor. (In a classical continuum, the
angular momentum balance is identically satisfied, and the angular velocity is equal
to half the vorticity.) For steady, fully developed flow, spatial gradients of M cause
the Cauchy stress σ to be asymmetric. To our knowledge, these effects have not been
directly measured in the laboratory so far, and careful experiments in this direction
would be of value. However, the consequences of our model are easily measurable
even in simple viscometric flows, as we shall indicate later.

While there is no direct experimental evidence of stress asymmetry or deviation of
the angular velocity from half of the vorticity, there is, however, sufficient motivation
for treating a granular medium as a Cosserat continuum. In his analysis of the
stress in a fluid composed of diatomic molecules, Dahler (1959) shows that an asym-
metric Cauchy stress can result from the presence of non-central interaction forces
between grains. Grain interactions in slow flows are dominated by frictional forces,
which are inherently non-central. Jenkins, Cundall & Ishibashi (1989) constructed a
micro-mechanical model for an assembly of identical spheres. They found that an
asymmetric stress resulted when the distribution of contact normals was anisotropic.
However, they secured symmetry of the stress tensor by suitably enforcing the rotation
of particles. In his simulations of rapid shear of rough circular discs between parallel
plates (the disks interacted through instantaneous collisions), Campbell (1993) ob-
served that the stress tensor was asymmetric and that non-zero couple stresses existed
near the walls. Therefore, a frictional Cosserat model may be an appropriate, and
perhaps even the correct description, for slow granular flow.

2. Governing equations
As in a classical continuum, the mass and linear momentum balances are given by

Dρ

Dt
+ ρ∇ · u = 0, (2.1)

ρ
Du

Dt
+ ∇ · σ − ρb = 0. (2.2)

Here D/Dt represents the material derivative, u the velocity, ρ ≡ ρpν is the bulk
density of the medium, ρp is the intrinsic density of the grains, ν is the solids fraction,



380 L. S. Mohan, K. K. Rao and P. R. Nott

σ the Cauchy stress tensor (defined in the compressive sense), and b the body force
per unit mass. As discussed in the preceding section, for a Cosserat continuum these
must be supplemented by the angular momentum balance (Jaunzemis 1967, p. 233)
which takes the form

ρ
D(I · ω)

Dt
+ ∇ ·M − ε : σ − ρζ = 0. (2.3)

Here I is the intrinsic inertia tensor, ω is the intrinsic angular velocity, M is couple
stress, ε is the alternating tensor and ζ is the body couple. On a plane with unit
normal n, the couple per unit area transmitted to the side towards which n points
(by the material on the other side) is n ·M . We follow the commonly used right-hand
convention for the signs of ω and n ·M . In general, the distribution of size, shape,
and orientation of the particles is required to determine the inertia tensor I. As the
present work is confined to steady, fully developed flow, the term involving I in (2.3)
vanishes.

Constitutive relations for σ and M for slow granular flow were proposed by
Mühlhaus & Vardoulakis (1987) and Tejchman & Wu (1993) as extensions of the
yield conditions and flow rules used in classical plasticity. Their relations are posed
in terms of strains and strain increments, which they employed to study the temporal
development of shear bands. Here we rewrite these relations in terms of the rate of
deformation tensor, to render them in a form that is appropriate for sustained flow.

2.1. Yield condition

A commonly used model for a block sliding on a plane is that the shear force Sf
is proportional to the normal force Nf , the constant of proportionality being the
coefficient of friction µ. When the block does not slide, Sf < µNf . The yield condition
is a continuum analogue of this relation. For a classical continuum, it is of the form
F(σ, ν) = 0, where F is a scalar function of the stress tensor σ and the solids fraction
ν. As elastic effects are neglected, the material is rigid if F < 0. If F = 0, either plastic
or irrecoverable deformation occurs, or the material is in a state of incipient yielding.
The extended von Mises yield condition, used in some studies, has F ≡ τ(J2)−Y (J1, ν)
where J1 is the first invariant (i.e. the trace) of σ and J2 is the second invariant of the
deviatoric stress tensor σ′ (see below). To generalize this for a Cosserat continuum,
we write τ as a function of J2 and the couple stress M , as described below.

Following Besdo (1974) (cited in Lippmann 1995), de Borst (1993) and Tejchman
& Wu (1993), we take the yield condition to be given by

F ≡ τ− Y = 0, (2.4a)

where

τ ≡
(
a1σ

′
ijσ
′
ij + a2σ

′
ijσ
′
ji +

1

(Ldp)2
MijMij

)1/2

, (2.4b)

σ′ij ≡ σij − (1/3)σkkδij is the deviatoric stress, δij is the Kronecker delta, a1, a2, and L
are material constants, and dp is the grain diameter. de Borst (1993) assumed that the
yield function Y depends on the mean stress σ ≡ σkk/3 and a hardening parameter
h. Here h is taken as the solids fraction ν, and hence Y = Y (σ, ν). The parameter
Ldp determines the characteristic material length scale, and is perhaps related to the
length of force-chains (Howell, Behringer & Veje 1999).

Only two of the three parameters a1, a2 and L in (2.4b) are independent, because the
third may be absorbed in the definition of Y (σ, ν) (see (2.4a)). Following Mühlhaus
& Vardoulakis (1987) we set a1 + a2 = 1/2, without loss of generality. When M
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vanishes, the quantity τ in (2.4b) reduces
√
J2, and hence the extended von Mises yield

condition is recovered.
While it is desirable to determine the parameters independently, neither experiments

nor micro-mechanical models are currently available to guide their choice. However,
the condition τ2 > 0 imposes the bound |a2/a1| 6 1, which follows from the result
that the expression for τ2 in (2.4b) is a quadratic form. We retain the value of 10
used by Mohan et al. (1999) for L, as it nicely fits experimental data for flow down
vertical channels, and also their choice of A ≡ a2/a1 = 1/3. Nevertheless, we explore
the sensitivity of the model predictions to these parameters in § 7.

The yield function Y (σ, ν) is usually written in the form Y = Y1(α)σc(ν) sinφ, where
α = σ/σc, and σc(ν) is the mean stress at critical state, which is a state of deformation
at constant density (see, for example, Jackson 1983). The parameter φ is a material
constant called the angle of internal friction. For the problems considered in this
paper, it is shown later that the material is everywhere at critical state, and hence
α = 1. The function Y1(α) may then be set equal to 1 without loss of generality, and
the yield condition reduces to

F = τ− σc(ν) sinφ = 0; σ = σc(ν) (2.5)

at a critical state. We expect σc to vanish when the solids fraction is below that of
loose random packing νmin, when the grains are no longer in sustained contact, and
to increase rapidly as ν approaches the solids fraction at dense random packing, νmax.

However, we simplify the analysis in this work by assuming that the material is
incompressible. Hence σc is treated as an primitive variable, and an explicit expression
for σc(ν) is not required.

2.2. Flow rule

The flow rule relates the rate-of-deformation tensor to the stress tensor. A commonly
used flow rule in classical frictional models is the plastic potential flow rule, which is
expressed as

Dij ≡ 1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
= λ̇

∂G

∂σji
. (2.6)

Here Dij is the rate-of-deformation tensor, G(σ, ν) is scalar function called the plastic

potential, and λ̇ is a scalar factor which must be determined as a part of the solution.
As detailed information on the plastic potential G is not usually available, we use the
associated flow rule (Schofield & Wroth 1968, p. 43), for which

G ≡ F = τ− Y . (2.7)

This form for the flow rule, in conjunction with a yield condition defined by (2.4a, b),
accounts for density changes accompanying deformation. Together, they constitute a
rate-independent constitutive relation, which is a desirable feature for slow granular
flows.

Tejchman & Wu (1993) used the approach of Mühlhaus (1989) to modify (2.6)
for a Cosserat continuum, but posed it in terms of strain increments as they were
addressing unsteady deformation. Because we are interested in sustained flow, we
replace the plastic strain increments used by Tejchman & Wu (1993) by the appropriate
deformation rates (Mühlhaus 1989), and thereby write the flow rule as

E ≡ ∇v + ε · ω = λ̇
∂F

∂σt
, H ≡ ∇ω = λ̇

∂F

∂M t
. (2.8a, b)
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Here ε is the alternating tensor, and the superscript t indicates the transpose. Equations
(2.8) may be written in Cartesian tensor notation as

Eij =
∂vi

∂xj
+ εijkωk = λ̇

∂F

∂σji
, Hij =

∂ωi

∂xj
= λ̇

∂F

∂Mji

. (2.9a, b)

We note here that Eij is the sum of the rate-of-deformation tensor Dij and an
objective antisymmetric tensor representing the difference between the spin tensor
and the particle spin −εijkωk . The quantities Eij and Hij are conjugate to the stress σji
and the couple stress Mji, respectively, in the sense that the dissipation rate per unit
volume by the contact forces and couples is given by −(σjiEij + MjiHij) (Mühlhaus
1989).

If M vanishes and σ is symmetric, (2.9) reduces to

Dij = λ̇
∂F

∂σji
(2.10)

and

εijkωk =
1

2

(
∂vj

∂xi
− ∂vi

∂xj

)
,

∂ωi

∂xj
= 0. (2.11)

Equation (2.10) is identical to the associated flow rule for the classical frictional model
(defined by (2.6) with G = F). For steady flow, equation (2.11) implies that ω is a
constant, and is equal to half the vorticity. On the other hand, the vorticity need not
be a constant in a classical frictional model. Thus, only some of the features of the
latter are recovered in this special case.

As explained in § 10, the most important aspects of our results, i.e. the ability of
the model to predict the velocity fields in viscometric flows and the dependence of
the shear layer thickness on the properties of the material and the flow cell, are not
specific to the particular forms of the constitutive relation chosen above, but have
greater validity. The forms of the yield condition and flow rule we have chosen above
serve to illustrate the importance of Cosserat effects in slow granular flows.

The application of the above Cosserat model to flow in vertical channels has been
described in Mohan et al. (1999). Here we consider two other viscometric flows: (i)
plane shear and (ii) cylindrical Couette flow. As rheological measurements are usually
made in these geometries, it is useful to develop models for these cases.

3. Application to plane shear
Consider steady, fully developed flow between horizontal walls which are separated

by a gap H (see figure 1). The upper wall moves in the positive x-direction with a
constant speed V , the lower wall is stationary, and a constant compressive normal
stress N is applied to the upper wall. (For the case of zero gravity, considered in § 5.1,
the bottom wall is also subjected to a compressive normal stress of magnitude N.)
Typically in an experiment, the initial gap, before the walls are set in motion, is fixed,
at say H0. Owing to dilation and compaction during shearing, this can change to a
different value H once steady flow is established.

The velocity fields are of the form

vx = vx(y), vy = 0, vz = 0,

ωx = 0, ωy = 0, ωz = ωz(y),

}
(3.1)

and all the stresses are assumed to depend only on the y-coordinate. Equations (3.1)
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Figure 1. Plane shear between parallel walls. The lower wall is stationary and the upper wall moves
at a constant speed V . A constant normal stress N is applied on the upper wall. The angles of wall
friction of the lower and upper walls are δL and δ, respectively.

and (2.1) imply that Dρ/Dt = 0. Hence the material is at a critical state, and the
yield condition is given by (2.5).

The mass balance (2.1) is identically satisfied, and the x- and y-components of the
linear momentum balance (2.2) reduce to

dσyx
dy

= 0,
dσyy
dy

= −ρg. (3.2a, b)

As there is no externally imposed body couple, the z-component of the angular
momentum balance reduces to

dMyz

dy
+ σxy − σyx = 0. (3.3)

The diagonal components of Eij are zero, and hence the flow rule (2.9) implies that

0 =
λ̇

6τ
(2σ′xx − σ′yy − σ′zz), (3.4a)

0 =
λ̇

6τ
(2σ′yy − σ′xx − σ′zz), (3.4b)

0 =
λ̇

6τ
(2σ′zz − σ′xx − σ′yy). (3.4c)

As σ′ij = σij − σδij , we have σ′xx + σ′yy + σ′zz = 0. Hence, (3.4) imply equality of the
normal stresses,

σxx = σyy = σzz = σ = σc(ν). (3.5)

From (3.1) and (2.9), we have

Exz = Ezx = Eyz = Ezy = 0,

which imply that all the shear stresses except σxy and σyx vanish. Similarly, all the
couple stresses except Myz vanish. Hence the yield condition (2.4a) reduces to

τ2 = a1(σ
2
xy + σ2

yx) + 2a2σxyσyx +
M2

yz

(Ldp)2
= (σc sinφ)2. (3.6)

The remaining equations of the flow rule (2.9) are

Exy =
dvx
dy

+ ωz =
λ̇

τ
(a1σyx + a2σxy), (3.7)

Eyx = −ωz =
λ̇

τ
(a1σxy + a2σyx), (3.8)
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Hzy =
dωz
dy

=
λ̇

τ

Myz

(Ldp)2
. (3.9)

Eliminating λ̇ from (3.7)–(3.9), we obtain

dvx
dy

= − (A+ 1)(σxy + σyx)ωz
σxy + Aσyx

, (3.10)

dωz
dy

= − ωz

(Ldp)2

2(A+ 1)m

(σxy + Aσyx)
. (3.11)

Equations (3.2), (3.3), (3.6), and (3.10)–(3.11) constitute the governing equations for
plane shear. They may be cast in dimensionless form by introducing the dimensionless
variables

ξ =
y

H
, u =

vx

V
, σ̄ij =

σij

N
, m =

1

L
√

2(A+ 1)

Myz

(Ndp)
, ω =

ωzH

V
. (3.12)

The governing equations now take the form

dσ̄yx
dξ

= 0, (3.13)

dσ̄yy
dξ

+ Bν = 0, (3.14)

ε α
dm

dξ
+

1

2(A+ 1)
(σ̄xy − σ̄yx) = 0, (3.15)

(σ̄2
xy + σ̄2

yx) + 2Aσ̄xyσ̄yx + 4(A+ 1)2m2 − 2(A+ 1)(σ̄c sinφ)2 = 0, (3.16)

du

dξ
+

(A+ 1)(σ̄xy + σ̄yx)ω

σ̄xy + Aσ̄yx
= 0, (3.17)

εα
dω

dξ
+

2(A+ 1)mω

(σ̄xy + Aσ̄yx)
= 0. (3.18)

where ε ≡ dp/H , B ≡ ρpgH/N is ratio of the gravitational head at the base to the
applied normal stress on the top plate, and α ≡ L/√2(A+ 1).

The yield condition (3.16) may be solved for σ̄xy to obtain

σ̄xy = −Aσ̄yx+
√

(A2 − 1)σ̄2
yx + 2(A+ 1)σ̄2

c sin
2φ− 4(A+ 1)2m2, (3.19)

where σ̄c = σc/N.

4. Boundary conditions
Equations (3.13)–(3.19) require five boundary conditions. We first consider boundary

conditions for the linear and angular momentum balances (3.13)–(3.15). The first is
the specification of the normal stress N acting on the upper wall, i.e.

σ̄yy(1) = 1. (4.1)

If the material slips relative to a wall, we use the usual friction boundary condition
(Brennen & Pearce 1978; Nedderman 1992, p. 41),

−σ̄yx/σ̄yy = tan δ, (4.2)
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where δ, the angle of wall friction, is a property of the wall and the granular material.
This is an approximate time-averaged boundary condition and is not expected to
capture rapid events such as stick-slip. For the special case of shear in the absence
of gravity between identical walls, (4.2) applies on both walls, which is equivalent to
specifying (4.2) at one wall and m(ξ = 1/2) = 0, as elaborated in § 5.1. We therefore
have the requisite number of boundary conditions for (3.13)–(3.15).

As discussed in Kaza (1982) and Nedderman (1992, p. 161), the classical frictional
model suggests that tan δ 6 sinφ. A ‘fully rough’ wall is defined as one for which the
angle of wall friction satisfies

tan δ = sinφ. (4.3)

Physically we may try to realize this by coating the wall with a monolayer of the
granular material. In some experiments involving walls coated with sand, polystyrene
beads and glass beads, the measured values of δ were found to be within 1◦ of
the values predicted by (4.3) (Kaza 1982). However, (4.3) should not be taken too
seriously, as it rests on assumptions which are difficult to verify. Moreover, it is well
known that grains do not pack as densely near a solid boundary as in the bulk; hence
it is reasonable to suppose that a fully rough wall is an idealization that is difficult to
achieve practically.

When the material does not slip relative to a wall (as is the case in most of the
problems considered in § 5), friction is not fully mobilized and an alternative to (4.2)
must be specified. One choice is to specify the value of m (= mw) at the wall. In this
work, we use the condition

σ̄xy = σ̄yx (4.4)

at a wall where the material does not slip relative to it. This is equivalent to specifying
mw , as it can then be expressed in terms of σyx using (4.4) and the yield condition
(3.16). Equation (4.4) was motivated by an expectation that Cosserat effects such
as the stress asymmetry would vanish outside the shear layer. However, the results
presented later do not support this conjecture. Fortunately, the velocity profile is
relatively insensitive to the value of mw , as discussed in § 5.

We now consider boundary conditions for the flow rule (3.17)–(3.18). If the material
slips relative to a boundary, we assume as in our earlier work (Mohan et al. 1999)
that

v − vw = −Kdpn× ω, (4.5)

where K is a dimensionless constant which reflects the roughness of the wall, n
is the unit normal at the wall (pointing into the granular material) and vw is the
linear velocity of the wall. This boundary condition relates the angular velocity of
the material adjacent to the wall to the slip velocity. It was introduced by Tejchman
& Gudehus (1993) and Tejchman & Wu (1993), who formulated it in terms of
displacement and rotation. Here we use an equivalent form in terms of velocity and
angular velocity.

An explanation of this condition was provided by Mohan et al. (1999), which we
repeat here for the sake of completeness. If we consider a single spherical particle
moving past a stationary wall, the linear velocity v′ of its centre of mass and the
angular velocity ω′ about an axis passing through the centre of mass are related by
v′ = (dp/2)n×ω′ if the particle rolls without slipping. Conversely, if the particle slides
without rolling, ω′ = 0 but v′ is arbitrary. For the boundary condition (4.5), these
limits correspond to K → 1/2 and K → ∞, respectively. If the particles are rough or
angular, rolling and slipping may be altogether absent, reducing the lower limit of
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K to zero. In a continuum description, we expect that K will decrease as the wall
roughness increases. It is reasonable to expect that K and the angle of wall friction
δ are related, as they both characterize the roughness of the wall. However, as data
bearing on this are lacking, both K and δ will be treated as independent parameters.

For the present problem, (4.5) may be written in dimensionless form as

u(1) = 1 + εKω(1) (4.6)

if (4.2) holds at the upper wall, and

u(0) = −εKω(0) (4.7)

if (4.2) holds at the lower wall.
If the material does not slip relative to the upper wall, we have

u(1) = 1. (4.8)

Similarly, if the material does not slip relative to the lower wall, we have

u(0) = 0. (4.9)

5. Results for plane shear
We start by considering the case of zero gravity, for which the parameter B in (3.14)

is set to zero. We then consider finite gravity, for which B determines the gravitational
overburden at the base in comparison with the applied normal load.

5.1. Shear in the absence of gravity

We first consider the case where the two walls are identical, i.e. δL = δ, where δL
and δ are the angles of wall friction of the lower and upper walls, respectively. The
domain is symmetric about the mid-plane ξ = 1/2, and (3.13)–(3.18) admit a solution
wherein the stresses are symmetric and m is antisymmetric about ξ = 1/2. Similarly
u − 1/2 is antisymmetric while the angular velocity ω is symmetric about ξ = 1/2.
It then suffices to solve the problem in the half-domain 1/2 6 ξ 6 1, with boundary
conditions

m(1/2) = 0, u(1/2) = 1/2, (5.1a, b)

and (4.1), (4.2) (at ξ = 1), and (4.6). The momentum balances (3.13) and (3.14) and
the boundary conditions (4.1) and (4.2) imply that

σ̄yy = 1, σ̄yx = − tan δ. (5.2)

Hence (3.5) implies that the solids fraction ν is also a constant, and its value is given
by σ̄c(ν) = 1. Substituting for σ̄xy from (3.19) into the angular momentum balance
(3.15) yields the following equation for the couple stress:

αε
dm

dξ
= −a∓√b2 − m2, (5.3)

where

a =
tan δ

2
, b =

(
a2 +

1

2(A+ 1)
(sin2 φ− tan2 δ)

)1/2

. (5.4)

This must be solved for m in the region 1/2 6 ξ 6 1 with boundary condition (5.1).
The shear stress σ̄xy then follows from (3.19).

Let us consider the choice of sign on the right-hand side of (5.3). If the negative
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sign is used in front of the square root, dm/dξ < 0. Equation (5.1) implies that |m|
increases as ξ increases from 1/2. Therefore, for small enough values of ε, m = −b at
some value of ξ = ξr < 1, and hence a real-valued solution cannot be constructed for
ξ > ξr . We therefore choose the positive sign in front of the square root. This leads to
an acceptable solution because, though dm/dξ > 0, the structure of (5.3) ensures that

|m| 6 √b2 − a2. This choice of roots is used throughout the paper. It corresponds to
the use of the negative sign in front of the square root in (3.19).

The differential equation (5.3) may be integrated by making the substitution m =
b sinψ, to obtain

ξ − 1/2

αε
= ψ +

a√
b2 − a2

ln

(
c+ tan(ψ/2)

c− tan(ψ/2)

)
(5.5)

with c =
√
b− a/√b+ a. The velocity fields must be determined by integrating (3.17)

and (3.18) numerically subject to the boundary conditions (4.6) and (5.1b).
Before discussing results for arbitrary values of the angle of wall friction δ, it is

instructive to consider the special case of a fully rough wall, defined by (4.3), for
which b = a. In this case, (5.3) and (5.1a) imply that m and all its derivatives with
respect to ξ vanish at ξ = 1/2, resulting in m(ξ) = 0. It then follows that

σ̄xy = σ̄yx = − tan δ, (5.6a)

ω = ω1 (constant), (5.6b)

u = 1/2− 2ω1(ξ − 1/2). (5.6c)

Using the boundary condition (4.6), we obtain

ω1 = −1/(2 + 2εK). (5.6d)

As expected from the direction of motion of the upper plate (figure 1), ω1 is negative,
implying that the particles rotate about the z-axis in the clockwise direction. If the
gap width is large compared to the particle diameter, ε → 0 and therefore u(1) → 1.
Thus the velocity slip at the walls vanishes when thick layers are sheared.

Thus the couple stress vanishes, the stress tensor is symmetric, and the angular
velocity is equal to half the vorticity, all of which are features of a classical continuum.
However, the classical frictional model does not lead to a unique velocity profile, unlike
the Cosserat model. As noted earlier, this is because the two models are not identical
for this special case.

For tan δ < sinφ, rather than determining m by solving (5.5) and then the velocity
fields by integrating (3.17)–(3.18), all the fields are obtained by integrating (3.15)–
(3.18), after substituting for σ̄xy from (3.19). This is done because such a numerical
solution procedure is required for plane shear under gravity and cylindrical Couette
flow, as analytical solutions could not be constructed for these problems. The system
of equations were solved numerically using the lsoda routine (Petzold 1983) from
the odepack library in netlib. Our numerical procedure was verified by favourable
comparison with the analytical solution given by (5.5), and the asymptotic solutions
in the Appendix (see figures 4 and 7).

Figure 2 shows the velocity and stress profiles for different values of the angle
of wall friction δ. The velocity profile is linear for the case of fully rough walls
(tan δ = sinφ), and becomes curved as the difference between sinφ and tan δ in-
creases. Correspondingly, the thickness of the shearing layer decreases. Panels (b) and
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Figure 2. Velocity and stress profiles from the Cosserat model for shear between identical walls in
the absence of gravity, for different values of the angle of wall friction δ: (b) shows the difference
between ω and half the vorticity (−(1/2) du/dξ), and (c) shows the asymmetry in the shear stress.
The material shears uniformly when the walls are fully rough (solid line). The thickness of the shear
layer decreases as the difference between sinφ and tan δ increases. Parameter values are: φ = 28.5◦,
ε = 0.04, L = 10, A = 1/3 and K = 0.5.

(c) illustrate the deviation of ω from half the vorticity and the stress asymmetry,
respectively. The choice of signs in (3.19) forces σ̄yx − σ̄xy to be non-negative.

When the angle of friction of the lower wall (δL) differs from that of the upper
wall (δ), the solution is no longer symmetric about ξ = 1/2. We assume without loss
of generality that δL > δ. If the friction boundary condition (4.2) is satisfied at the
upper wall, −σ̄yx/σ̄yy = tan δ < tan δL. Hence (4.2) is not satisfied at the lower wall.
Conversely, if (4.2) is satisfied at the lower wall, −σ̄yx/σ̄yy = tan δL > tan δ at the
upper wall. As this is not permissible within the present framework, (4.2) is used at
the upper wall, along with the velocity boundary condition (4.6). At the lower wall
we use boundary condition (4.4) for the couple stress, and the no-slip condition (4.9).

Equations (3.15) and (4.4) imply that dm/dξ = 0 at ξ = 0. It then follows from
(5.3) that all higher derivatives of m vanish at ξ = 0. Hence, the couple stress is
constant and the shear stresses are equal,

m = m0 = (b2 − a2)1/2, (5.7a)

σ̄xy = σ̄yx = − tan δ. (5.7b)

Substitution of these in (3.17) yields

du

dξ
= −2ω.
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Figure 3. The velocity and angular velocity profiles for plane shear in the absence of gravity when
the lower wall is rougher than the upper wall, i.e. δL > δ. For this problem, the stress is symmetric,
the couple stress is constant (see (5.7)), and the angular velocity is equal to half the vorticity. The
material shears uniformly when the upper wall is fully rough (solid line). Other parameters are
given in the caption of figure 2.

Thus, the stress tensor is symmetric and the angular velocity is equal to half the
vorticity, as in a classical continuum. However, the couple stress is finite and the
velocity field is uniquely determined, in contrast to the predictions of a classical
frictional model. The velocity fields are readily obtained by integrating (3.17)–(3.18),
resulting in

ω = ω1 exp(−k(1− ξ)/ε), (5.8a)

u =
−2ω1ε

k
(exp(−k(1− ξ)/ε)− exp(−k/ε)), (5.8b)

where

ω1 = −ε−1(2/k +K − 2e−k/ε/k)−1 (5.8c)

is the angular velocity at the upper wall and

k = m0/(αa). (5.8d)

We see from equation (5.8b) that the shear layer thickness increases with the roughness
of the upper wall. The velocity profile becomes progressively linear as tan δ → sinφ
(or k → 0). However, the velocity profile in this limit still differs from the uniformly
shearing solution given in (5.6c), owing to the difference in velocity boundary condi-
tions at the lower wall in the two cases. Profiles of the velocity and angular velocity
(which equals half the vorticity) fields are shown in figure 3 for three values of δ.
The increasing localization of shear near the upper wall as δ decreases is apparent.
In this case, the velocity slip at the upper wall is non-zero in the limit ε → 0. This
is in contrast to the case of shear between fully rough walls, where the velocity slip
vanishes in this limit.

When the Couette gap is large compared to the grain size, i.e. ε� 1, an approximate
solution may be obtained by an asymptotic analysis, described in the Appendix. For
shear between identical walls, the couple stress is constant and the Cauchy stress is
symmetric, i.e.

m = m0 = (b2 − a2)1/2, σ̄xy = σ̄yx = − tan δ, (5.9a, b)

except in a boundary layer of thickness ∼ O(ε) near ξ = 1/2. In the boundary layer, m
decreases from m0 to zero at ξ = 1/2, but this variation has no effect on the velocity
fields (see the Appendix, §A.1). There is no boundary layer when one of the walls is
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Figure 4. Comparison of the asymptotic solutions (for small ε) for (a) the linear velocity and
(b) the angular velocity fields with their respective numerical solutions, for plane shear in the absence
of gravity. The solid line and circles represent numerical and asymptotic solutions, respectively, for
shear between identical walls. The dashed line and diamonds represent numerical and asymptotic
solutions, respectively, for the case of a rougher lower wall. Parameter values are: φ = 28.5◦, δ = 20◦,
ε = 10−3, L = 10, A = 1/3 and K = 0.5.

rougher. The leading-order velocity fields for the two cases, given in (A 3) and (A 4),
may be combined and written as

ω =
−(1− u0)

ε(K + 2/k)
exp(−k(1− ξ)/ε), (5.9c)

u− u0 =
(1− u0)2/k

(K + 2/k)
exp(−k(1− ξ)/ε). (5.9d )

Here u0 is the reference velocity, equal to 1/2 (the velocity at the symmetry axis) for
shear between identical walls, and zero (the velocity of the lower wall) for a rougher
lower wall. The rapid decay of ω and u with distance from the wall is apparent.
Equation (5.9) is not valid when the walls are fully rough, as we have assumed in its
derivation that k � ε (see §A.1); as stated earlier, all Cosserat effects vanish and the
material shears uniformly in the gap when the walls are fully rough. The asymptotic
solution for the velocity fields (5.9c, d ) agrees well with the numerical solution for
shear between identical walls and for the case of a rougher lower wall (figure 4). The
dependence of the shear layer thickness on ε is discussed in § 8.

As discussed in § 4, we do not have a rigorous basis for the boundary condition
(4.4) for the case of a rougher lower wall. A study of the sensitivity of the model
predictions to varying the boundary condition is therefore in order. The imposition of
any condition for the angular momentum at the lower wall is equivalent to specifying
the value of the couple stress there. In particular, the boundary condition (4.4) is
equivalent to m(0) = m0, where m0 is defined by (5.7a). For the shear stress σ̄xy to
be real, (5.3) implies that the maximum value m(0) can take is b, defined in (5.4);
for ω and the velocity gradient to increase in magnitude with distance from the
lower wall (as is physically reasonable) the flow rule (3.17)–(3.18) dictates that the
minimum value m(0) can take is zero. As shown in figure 5, the value of m(0) has a
negligible effect on the velocity profile. The reason for this result is that the couple
stress approaches a common asymptote as ξ → 1 for all values of m(0) (see also
§A.2). As the velocity and angular velocity fields decay exponentially with distance
from the upper wall, with a decay length set by the couple stress near the upper wall,
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Figure 5. Effect of m(0), the boundary condition for the couple stress, on (a) the couple stress and
(b) the linear velocity fields, for shear in the absence of gravity. The curves are for four values of
m(0) in the allowed range 0 < m(0) < b; the solid line is for m(0) = b. The velocity profiles for all
the cases are indistinguishable. Here δ = 10◦, δL > δ, and other parameters are given in the caption
of figure 2.

the boundary condition for m(0) is largely unimportant in determining the velocity
fields.

5.2. Shear in a gravitational field

Let us first consider the case where both walls have the same roughness, so that
δL = δ. Equations (3.13) and (3.14) imply

σ̄yx = constant,
dσ̄yy
dξ

= −Bν. (5.10)

Hence the ratio |σ̄yx|/σ̄yy decreases with distance from the upper wall, and (4.2) cannot
be satisfied at the lower wall if it holds at the upper wall. Therefore, for the reasons
given in § 5.1 (for the case δ < δL), the boundary conditions are (4.1), (4.2) and (4.6)
at the upper wall (ξ = 1), and (4.4) and (4.9) at the lower wall (ξ = 0).

As the normal stress σ̄yy increases with distance from the upper wall, (3.5) implies
that the solids fraction ν also increases. However, in the regime of high solids fraction,
a moderate change in σc causes only a small change in ν. As gravitational compaction
alone is usually sufficient to bring the solids fraction to a level close to maximum
packing, we treat the material as incompressible, and the mean stress at critical state
σc as an independent field. This approximation is used only to simplify the analysis;
the variation in the body force can be easily be accounted for.

Figure 6 shows results for shear between fully rough walls under gravity, for four
values of the parameter B. The solution for B = 0 corresponds to the uniform shear
solution in the absence of gravity. As B increases, the velocity profile becomes curved,
and shear is localized in a thin layer adjacent to the upper wall for large B. While the
couple stress increases with distance from the upper wall, other Cosserat effects, such
as the difference between ω and half the vorticity and the asymmetry in the Cauchy
stress are maximum at the upper wall.

For large Couette gap, the asymptotic analysis in §A.2 provides an approximate
solution. If the walls are not fully rough, the leading-order solution for the velocity
fields is identical to that for gravity-free shear, given by (5.9) with u0 = 0. If the walls
are fully rough, there is a boundary layer of thickness ∼ ε2/3 near the upper wall
within which m deviates from m0. Consequently, the shear layer is thinner than in the
zero gravity case (see § 8). The leading-order asymptotic solution for the couple stress
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Figure 6. Predictions of the model for plane shear between fully rough walls under gravity;
(b) shows the difference between ω and half the vorticity, and (c) shows the asymmetry in the shear
stress. The solid line is absent in (b) because ω + (1/2) du/dξ = 0 for this case. The parameter
B ≡ (ρpgH)/N indicates the strength of the gravitational body force. Other parameters are as in
the caption of figure 2.
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Figure 7. The asymptotic solutions for small ε compared with the numerical solutions for plane
shear under gravity (circle and solid line respectively), and cylindrical Couette flow (diamond and
dashed line respectively). The walls are fully rough for both cases. Parameter values are: φ = 28.5◦,
ε = 10−3, L = 10, A = 1/3, and K = 0.5. In addition, B = 1 for plane shear and R̄i = 1 for
cylindrical Couette flow (see § 6).

and velocity fields are compared with the numerical solution in figure 7, showing
good agreement. As a small value of ε has been used, the slip velocity at the upper
wall is negligible.

If δL is sufficiently smaller than δ, the friction boundary condition (4.2) can
be satisfied at the lower wall. Assuming that the density of the material remains
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Figure 8. Schematic figure of cylindrical Couette flow. The outer cylinder is stationary and the
inner cylinder rotates at constant angular velocity ω.

constant across the layer (see above), it is seen that (4.2) holds at the lower wall if
tan δL 6 tan δ/(1 + Bν), and at the upper wall if tan δL > tan δ/(1 + Bν). The shear
layer is adjacent to the lower wall in the former case, and adjacent to the upper wall
in the latter (as in figure 6).

6. Cylindrical Couette flow
The cylindrical Couette cell is a common device for making rheological measure-

ments. The material is confined between two vertical coaxial cylinders of radii Ri
and Ri +H . Typically, the inner cylinder is rotated at constant speed, while the outer
cylinder is kept stationary.

Using the cylindrical coordinates indicated in figure 8, the velocity field for steady
axisymmetric flow is assumed to be of the form

vr = 0, vz = 0, vθ = vθ(r). (6.1)

The only non-vanishing component of the vorticity is in the z-direction, and we expect
the same for the intrinsic angular velocity,

ωr = ωθ = 0, ωz = ωz(r). (6.2)

As in the case of plane shear (see § 3), the diagonal components of (2.8) imply equality
of normal stresses,

σrr = σθθ = σzz = σc. (6.3)

It also follows from the flow rule (2.8) that all shear stresses except σrθ and σθr vanish,
and all couple stresses except Mrz vanish.

We note as an interesting aside that, as σrz = 0, there is no shear stress in the vertical
direction on the walls of the Couette cell, regardless of either the wall roughness or
the height of the material in the cell. In contrast, it is well known that the shear
stress at the walls supports a part of the weight of a static granular column, leading
to the so-called Janssen saturation of the stress with distance from the upper surface
(Janssen 1895; Nedderman 1992, p. 84). While clear evidence as to whether or not
this feature is preserved during flow is lacking, the data of Tardos et al. (1998)
appear to be inconsistent with the Janssen solution. Nevertheless, measurements of
σrz in cylindrical Couette flow have not been reported in the literature, and such
measurements would provide a valuable check on the model predictions.
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We introduce the dimensionless variables

u =
vθ

Vi
, ω =

ωzH

Vi
, ξ =

r − Ri
H

, ζ =
z

H
,

σ̄ij =
σij

ρpgH
, σ̄c =

σc

ρpgH
, m =

1

L
√

2(A+ 1)

Mrz

ρp gHdp
,

 (6.4)

where Ri and Vi are the radius and the velocity of the inner cylinder, respectively.
The yield condition (2.4a) then reduces to

(σ̄2
rθ + σ̄2

θr) + 2Aσ̄θrσ̄rθ + 4(A+ 1)2m2 = 2(A+ 1)(σ̄c sinφ)2. (6.5)

As in § 3, the remaining components of the flow rule, after elimination of the factor
λ̇/τ, yield

du

dξ
− u

(R̄i + ξ)
= −

(
ω +

u

(R̄i + ξ)

)
(A+ 1)(σ̄θr + σ̄rθ)

(σ̄θr + Aσ̄rθ)
, (6.6)

εα
dω

dξ
= −

(
ω +

u

(R̄i + ξ)

)
2(A+ 1)m

(σ̄θr + Aσ̄rθ)
, (6.7)

which determine the variation of the velocity fields u and ω. Here, R̄i ≡ Ri/H , and
ε ≡ dp/H is the ratio of the particle diameter to the Couette gap. An important point
to note is that we must seek a solution in which the couple stress is negative, so the
magnitude of ω (and the vorticity) decreases with distance from the inner cylinder, as
is physically reasonable.

The mass balance is identically satisfied, and the balances of linear and angular
momentum assume the form

∂σ̄c

∂ξ
=

Cνu2

(1 + ξ/R̄i)
, (6.8)

∂σ̄rθ

∂ξ
+
σ̄rθ + σ̄θr

(R̄i + ξ)
= 0, (6.9)

∂σ̄c

∂ζ
= −ν, (6.10)

ε

(
∂m

∂ξ
+

m

(R̄i + ξ)

)
= σ̄rθ − σ̄θr, (6.11)

where C = V 2
i /(Rig) is the Froude number. Note that (6.9) differs from the form

given in most books on fluid mechanics, where the symmetry of the stress tensor is
implicitly assumed.

We now show that the forms assumed for the velocity and angular velocity fields in
(6.1)–(6.2) lead to an inconsistency. Equations (6.8) and (6.10) imply that σ̄c = σ̄c(ξ, ζ).
Hence the yield condition (6.5) and the momentum balance (6.9) imply that σ̄rθ , σ̄θr ,
and therefore the right-hand sides of (6.6) and (6.7), depend on ξ and ζ. However,
their left-hand sides have been assumed to depend only on ξ. Thus it appears that
we must relax some of the assumptions made above by allowing variation of u and
ω with ζ, i.e. in the vertical direction, and also to allow a non-zero ωr . This however
leads to a large set of coupled partial differential equations whose solution appears to
be a formidable task. This is contrary to our purpose of developing simple solutions
that bring out the qualitative features of our model. However, it is possible construct
a simple approximate solution, as described below.

We note that the above inconsistency arises because of the relation between the
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shear and normal stresses through the yield condition. For a Newtonian fluid of
constant viscosity, there is no such relation and hence no inconsistency in assuming
a velocity field of the form given in (6.1).

For slow flows, the centripetal acceleration is small compared to the acceleration
due to gravity, i.e. C � 1. We may therefore seek a solution as a regular perturbation
in C , i.e. m = m(0) +Cm(1) +C2m(2) + · · ·. For C � 1, the exact solution does not differ
significantly from the leading-order solution of O(C0), except near the ends of the
Couette cell where additional boundary conditions have to be satisfied. We therefore
determine only the leading-order solution below, leaving the higher-order corrections
to a later investigation.

At O(C0), it follows from (6.8) that σ̄c is not a function of the radial position ξ, and
hence σ̄c = −νζ (the normal stress vanishes at the upper free surface). When this is
substituted in the equations (6.6) and (6.7) to determine the velocity fields, there is no
longer an inconsistency, and hence the simple forms of the velocity fields assumed in
(6.1)–(6.2) are valid; in other words, when scaled by the hydrostatic head, the stress
is independent of ζ. We now replace the definitions of the dimensionless stress and
couple stress in (6.4) by the following:

σ̄ij =
σij

ρpgHσ̄c
, m =

Mrz

ρpgHσ̄cdpL
√

2(A+ 1)
. (6.12)

Equations (6.9) and (6.10) remain unchanged even after the above definitions. We
note that our analysis is not applicable at the free surface, where the stresses vanish.

Consider the case where both walls have the same roughness. Referring to figure 8,
σ̄rθ < 0 at the inner cylinder (ξ = 0). If it is assumed that σ̄θr has the same sign
as σ̄rθ , (6.9) implies that σ̄rθ decreases in magnitude as ξ increases. (Our results are
consistent with this assumption.) As (6.8) and (6.12) imply that σ̄rr is a constant, the
ratio |σ̄rθ|/σ̄rr decreases with distance from the inner cylinder. Therefore, the friction
boundary condition applies at the inner cylinder, but cannot be satisfied at the outer
cylinder. This situation is identical to that at the lower wall for the case of plane
shear under gravity. We therefore follow the arguments outlined in § 5.2 and adopt
boundary conditions

σ̄rθ = σ̄θr, u = 0 (6.13)

at the outer cylinder (ξ = 1). At the inner cylinder (ξ = 0), we use the friction and
slip boundary conditions

σ̄rθ = − tan δ, u = −1− εKω, (6.14a, b)

where we have the inner cylinder rotating in the anti-clockwise direction (see figure 8).
In the limit R̄i → ∞, (6.14a) holds at the outer cylinder also. Hence the velocity
boundary condition u = εKω is applied at the outer wall. This corresponds to plane
shear between walls of equal roughness in the absence of gravity, discussed in § 5.1.

The governing equations (6.5)–(6.11), with boundary conditions (6.13)–(6.14), are
integrated using the procedure described in § 5.1. The stress and velocity profiles for
the case of fully rough walls are presented in figure 9 for four values of R̄i. As
expected, we recover the uniformly shearing solution for plane shear in the limit
R̄i → ∞. The localization of shear near the inner cylinder increases as R̄i decreases.
Though the magnitude of the couple stress is maximum at the outer cylinder, the
asymmetry of the Cauchy stress and the deviation of ω from half the vorticity are
maximum at the inner cylinder.

The solution for large Couette gap is provided by the asymptotic analysis in §A.3.
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Figure 9. Profiles of the stress and kinematic fields for shear between fully rough walls in a
cylindrical Couette cell for four values of R̄i, the ratio of the inner cylinder radius to the Couette
gap; (b) shows the difference between ω and half the vorticity, and (c) shows the asymmetry in
the shear stress. The solid line is absent in (b) because ω + (1/2) du/dξ = 0 for this case. R̄i = ∞
(solid line) corresponds to plane shear, for which ω is equal to the vorticity and the Cauchy stress
is symmetric. Parameter values are: φ = 28.5◦, ε = 0.04, L = 10, A = 1/3 and K = 0.5.

The leading-order solution is the same as in plane shear (with or without gravity)
when the walls are not fully rough. If the walls are fully rough, the solution is similar
in form to that for plane shear under gravity: the couple stress rises to m0 within a
boundary layer of thickness ∼ ε2/3 near the inner cylinder, and remains at m0 outside
the boundary layer. The velocity fields are determined by the couple stress within
the boundary layer, and are independent of the wall roughness. The leading-order
asymptotic solution for the velocity fields is compared with the numerical solution
for fully rough walls in figure 7.

6.1. Comparison with experimental data

Experimental measurements of the velocity profile in cylindrical Couette flow of
granular materials have recently been reported by Mueth et al. (2000) and Losert
et al. (2000). Mueth et al. (2000) used mustard and poppy seeds and obtained the
velocity profiles using magnetic resonance imaging. Losert et al. (2000) used glass
beads and measured the velocity profile by video imaging of the upper surface of the
granular column; they also applied upward aeration across the granular column, and
observed that it has negligible effect on the velocity profile. From the data reported in
their papers, we have determined the parameter R, defined in § 1, to be in the range
6× 10−9–10−3 for the experiments of Mueth et al. (2000), and 7× 10−9–2× 10−4 for
those of Losert et al. (2000). The Froude number C , defined below (6.11), for the two
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Figure 10. Comparison of model predictions (curves) with the data (symbols) of Mueth et al.
(2000) for shear of (a) mustard seeds and (b) poppy seeds in a cylindrical Couette cell. In the
experiments, a layer of particles was glued to the cylinders. The data points to the left of ξ = 0 are
the velocity of the glued layer. The dot-dash line represents the model prediction for fully rough
walls (tan δ = sinφ, see (4.3)). See text for other parameters.
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Figure 11. Comparison of model predictions (curves) with the data (symbols) of Losert et al. (2000)
for the shear of glass beads in a cylindrical Couette cell. In the experiments, a layer of particles
was glued to the cylinders. The dot-dash line represents the model prediction for fully rough walls
(tan δ = sinφ, see (4.3)). See text for other parameters.

studies was in the range 10−6–6× 10−2 and 2× 10−6–2× 10−2, respectively. As R and
C are both small for these studies, it is appropriate to compare our model predictions
with their data. Both find that the shape of the velocity profile is independent of the
rotation rate of the inner cylinder, which, of course, is also a feature of our model.

The predictions of the velocity profile using our Cosserat model are compared
with the data of Mueth et al. (2000) in figure 10 and with the data of Losert et al.
(2000) in figure 11. In both studies, the inner and outer cylinders were coated with
a layer of particles; we have therefore taken the walls to be at the outer edges of
the glued layers for the purpose of comparison. Neither of the studies has reported
the angle of internal friction of the material they used. For mustard seeds, Tüzün &
Nedderman (1985) report it to be in the range 23◦–25◦, and we have used φ = 25◦ for
our calculations. Data on this property are lacking for the more angular and rough
poppy seeds, and we have taken the value of 31◦. For glass beads, we have used the
value of φ = 28.5◦ reported by Nott (1991). The value of K was set by matching the
wall slip velocity to the reported values, yielding K = 0.65 for mustard seeds, and
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Figure 12. Sensitivity of model predictions to the parameter A in the yield condition (3.16). The
solutions are for plane shear between fully rough walls under gravity with B = 1. As discussed in
§ 2.1, |A| must be 6 1, and for the set of parameters used here, solutions do not exist for A < −0.57.
The values of other parameters are as in the caption of figure 2.

zero for poppy seeds and glass beads. No attempt was made to determine the best-fit
values of L and A, and the values used so far in the paper have been retained, namely
L = 10, A = 1/3. The values of ε and Ri, determined from reported values of the
mean grain diameter and the dimensions of the Couette cell are ε = 0.15, 0.058 and
0.067, and R̄i = 2.29, 1.89 and 4.25 for mustard, poppy and glass, respectively.

The dot-dash lines in figures 10 and 11 are model predictions assuming fully rough
walls (tan δ = sinφ), and the solid lines are predictions for δ roughly 2◦ lower
than tan−1(sinφ). We find that the latter fits the data better, in agreement with our
argument in § 5.1 that a fully rough wall may be difficult to achieve practically. It
is clear that there is, in general, good agreement between the model predictions and
the data. Though our model overestimates the velocity for glass beads (figure 11),
we must bear in mind that we have only made plausible guesses for almost all the
material properties, and have not attempted to achieve a better fit by adjusting the
parameters.

Our model predicts only a small increase in the solids fraction with distance from
the inner cylinder (if the assumption of incompressibility is relaxed), while the data
of Mueth et al. (2000) suggest a substantial variation. In spite of this difference, the
predicted velocity profiles are in good agreement with their data. Thus it appears that
the velocity field is relatively insensitive to the dilation of the granular medium.

7. Parameter sensitivity of model predictions
The properties of the material and the boundaries in the Cosserat model are

characterized by the angles of internal friction φ, the angles of wall friction δL and
δ, the parameters A ≡ a2/a1 and L occurring in the yield condition (2.4b), and
the parameter K that determines the extent of slip at a boundary in the boundary
condition (4.5). The significance of the angles of friction is well understood; their
physical meaning remains the same as in classical plasticity models. We now consider
the sensitivity of the model to the parameters A and K , which are associated with
Cosserat effects in our model. To this end, we consider the problem of plane shear
under gravity, and explore the effect of varying these parameters.

As discussed in § 2.1, A can assume values only in the range (−1, 1). However,
solutions may not exist for all negative values of A within this range, as illustrated in
figure 12. For the set of values of the other parameters used here, the shear stress σxy
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Figure 13. Sensitivity of model predictions to the parameter K in the kinematic boundary condition
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the slip velocity at the upper wall increases and the magnitude of the angular velocity at the wall
decreases. The stress and couple stress profiles are not affected by the value of K , and are given by
the dotted lines in figure 6. The values of parameters other than K are as in the caption of figure 2.

assumes complex values when A < −0.57, and hence a physically acceptable solution
does not exist. Solutions exist for −0.57 < A < 1, and figure 12 shows that in this
range of values, there is not much variation in the velocity profile and even less in
the couple stress.

The parameter K determines the extent of velocity slip at the boundaries, but does
not affect the stress and couple stress fields. As shown in figure 13, there is no slip
at the upper wall when K = 0, and the velocity slip increases with K . The important
point is that the shapes of the velocity profiles are unaltered by varying K , a result
which is also shown clearly by the asymptotic solutions in the Appendix.

8. Shear layer thickness
Though our model assumes that the granular material yields everywhere within

the Couette gap, the results in the preceding two sections show the velocity decaying
rapidly with distance from the upper wall for plane shear (with the exception of
gravity-free shear between fully rough walls), and from the inner cylinder for cylindri-
cal Couette flow. In the experiments of Mueth et al. (2000) and Losert et al. (2000),
grain motion is not detectable beyond a distance of a few particle diameters from the
wall. It is therefore useful to define the dimensionless shear layer thickness ∆ as the
distance, in terms of particle diameters, from the upper wall (or the inner cylinder)
at which the velocity decays to a small fraction f of the wall velocity,

(u(1− ε∆)− u0) = f(u(1)− u0) for plane shear, (8.1a)

(u(ε∆)− u0) = f(u(0)− u0) for cylindrical Couette flow. (8.1b)

The reference velocity u0 is equal to zero, except in the case of gravity-free plane shear
between identical walls, where it is 1/2 (the velocity at the centre). We set f = 0.05,
as in earlier studies, and determine the shear layer thickness as a function of the
Couette gap, or equivalently, ε. While ∆ must in general be determined numerically,
an analytical expression can be obtained in the limit of large Couette gap (ε→ 0), as
discussed below.

In most practical instances of granular flow, the size of the vessel is much larger
than the grain size. It is therefore useful to determine the dependence of the shear
layer thickness ∆ on the system size in the limit ε → 0. In our earlier work on flow
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in vertical channels (Mohan et al. 1999), we showed that in the limit of small ε, ∆
is independent of ε, except in the singular case of a fully rough wall (tan δ = sinφ),
when it grows as ε−1/3. Here, we apply the same approach to determine the asymptotic
behaviour of ∆ for plane and cylindrical Couette flow.

For each of the problems considered, the leading-order asymptotic solutions for
the stress and velocity fields are given in the Appendix. These suffice to determine
the shear layer thickness. The details of the asymptotic analysis are given in the
Appendix, and the solutions are used here to determine the shear layer thickness.

When the walls are not fully rough, i.e. tan δ < sinφ, the leading-order linear
velocity fields for plane shear and cylindrical Couette flow may be written in the
common form (5.9d ) (see (A 3b) and (A 4b)), where the reference velocity u0 is as
defined below (8.1). The shear layer thickness can now be determined using (5.9d )
and (8.1),

∆ = − ln(f)/k =
2.996L tan δ

2(sin2 φ− tan2 δ)1/2
. (8.2)

Thus, we find ∆ to be independent of the Couette gap when the latter is large
compared to particle size (i.e. ε� 1). A feature observed in some experiments is that
the shear layer thickness decreases as the wall becomes smoother (Nedderman &
Laohakul 1980), and this too is captured by (8.2).

We note that the shear layer thickness increases as tan δ approaches sinφ. In the
precise limit of fully rough walls, the solution was given in § 5.1 for plane shear in the
absence of gravity, showing that shear rate is equal throughout the gap, and therefore
∆ = (1 − u0)(1 − f)ε−1. Thus, the parameter L does not determine the thickness of
the shear layer when the walls are fully rough, in contrast to the case of non-fully
rough walls. In the former case, the couple stress vanishes, and hence the governing
equations do not involve L.

For shear under gravity and cylindrical Couette flow, the material does not shear
uniformly for fully rough walls, and the asymptotic velocity profile (5.9d ) is not valid
in a region of thickness ∼ ε2/3 near the upper wall and inner cylinder, respectively. A
uniformly valid solution is found by rescaling ξ and m in this ‘inner’ region, as shown
in §A.2 and §A.3, and the leading-order velocity profile then assumes the form

u = 1− I(ξ̂)/I(∞). (8.3)

where

I(ξ̂) ≡ (Ai(0))−2

∫ ξ̂

0

(Ai(z))2 dz.

Here Ai(x) is the Airy function, and the rescaled independent variable is

ξ̂ =


(1− ξ)ε−2/3

(
L2

2Bν

)−1/3

for plane shear under gravity,

ξε−2/3

(
L2R̄i

4

)−1/3

for cylindrical Couette flow.

(8.4)

The value of ξ̂ at which (8.1) holds is found to be 1.275, resulting in the following
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Figure 14. The shear layer thickness ∆ as a function of ε for plane shear and cylindrical Couette
flow: (a) for a non-fully rough upper wall (or inner cylinder), and (b) for fully rough walls. In both
panels, the curves represent asymptotic solutions for small ε, given in § 8, and the symbols represent
numerical solutions. The circles and crosses are for plane shear in the absence of gravity between
identical (but not fully rough) walls and with a rougher lower wall, respectively; the asterisks are
for plane shear under gravity and the diamonds are for cylindrical Couette flow. Parameter values
for (a) are: φ = 28.5◦, δ = 20◦, L = 10, A = 1/3 and K = 0.5, B = 1 (for plane shear under gravity)
and R̄i = 1 (for cylindrical Couette flow); (b) the same except that δ = tan−1 sinφ = 25.5◦.

expression for the shear layer thickness:

∆ =


1.275ε−1/3

(
L2

2Bν

)1/3

for plane shear under gravity,

1.275ε−1/3

(
L2R̄i

4

)1/3

for cylindrical Couette flow.

(8.5)

Thus, ∆ grows as the one-third power of the ratio of the Couette gap to grain size
when the walls are fully rough. In contrast, ∆ is independent of the Couette gap (cf.
(8.2)) when the walls are not fully rough. It also grows as (Bν)−1/3, in plane shear
under gravity, as the gravitational body force is reduced, but the above asymptotic
analysis is not valid when Bν ∼ ε. In the limit B = 0, which corresponds to plane
shear without gravity, the solution in § 5.1 shows a linear velocity profile, and therefore
∆ = (1− u0)(1− f)ε−1. Similarly ∆ grows as (R̄i)

1/3, in cylindrical Couette flow, as the
radius of the inner cylinder increases, and approaches (1− u0)(1 − f)ε−1 in the limit
R̄i →∞.

The variation of ∆ with ε is shown in figure 14 for plane and cylindrical Couette
flow; panel (a) shows the results for non-fully rough walls and panel (b) for fully rough
walls. The symbols are the numerical results obtained by the procedure described in
§§ 5 and 6, and the lines are the asymptotic solutions. For non-fully rough walls, the
shear layer thickness for all the four problems converges to the common asymptote
of ∆ ≈ 17.67 as ε→ 0, as shown in figure 14(a). For shear between fully rough walls,
the numerical solutions for ∆ asymptote to the forms given by (8.5) as ε→ 0.

9. Other models
Models for the shear of dense granular materials have also been proposed recently

by Savage (1998) and Losert et al. (2000). Here we briefly discuss some aspects of
their models.
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9.1. The model of Savage (1998)

In a recent paper, Savage (1998) proposed a model that attempts to merge the critical
state theory for quasi-static flows with the results from kinetic theory for rapid flows,
with the stated primary aim of predicting the behaviour of transitional and rapid flows.
The model starts with a yield condition and an associated flow rule (as in this work),
but Savage argues that the rate of deformation tensor D at any location fluctuates
in time, with a standard deviation ε. The mean stress tensor 〈σ〉 is determined by
computing its average with respect to a Gaussian distribution of deformation rates.
In the limit |〈Dij〉| � ε, where Dij is a component of D , a Newtonian constitutive
relation is obtained for 〈σ〉, with the shear viscosity given by σcA/ε, where σc is the
frictional mean stress at a critical state and A is a material constant. In order to obtain
a theory which resembles kinetic theories for rapid flow, it is assumed that σc may be
replaced by σc1(ν) + σc2(ν, T ). Here σc1 is the frictional mean stress, σc2 is the mean
stress obtained from kinetic theory, and T is the grain temperature or equivalently,
the kinetic energy of velocity fluctuations. To proceed further, it is assumed that ε is
proportional to

√
T , and the proportionality constant is determined by matching the

form obtained for large values of T with the corresponding kinetic theory result.
The idea of accounting for fluctuations in the deformation rate appears to have

merit, but we find the following aspects of the model unconvincing. (i) The physical
origin of large fluctuations in the velocity gradients relative to the mean velocity
gradients is not clear. Data bearing on this issue do not appear to be available in
the literature. (ii) Even though the constitutive relations are derived by assuming that
|〈Dij〉| � ε, this ratio turns out to be O(1) in the examples discussed in Savage (1998).
Thus the theory is applied beyond its range of validity. As noted by Savage (1998),
some of the kinetic constitutive equations also suffer from this defect when applied
to plane shear. (iii) As the velocity gradients are decomposed into mean values and
fluctuations, it appears that the inertial terms, which involve products of velocity
fluctuations, may contribute non-zero terms to the averaged momentum balances.
Such terms have been omitted in the analysis. (iv) The solution of bounded flow
problems requires the specification of the grain temperature at the boundaries, which
is usually unknown a priori ; realistically one would like to determine the temperature
as part of the solution.

9.2. The model of Losert et al. (2000)

This is a minor variant of the high-density kinetic theory of Haff (1983), though
Losert et al. (2000) have arrived at the high-density limit using the kinetic theory of
Jenkins & Savage (1983). The only change the authors have made is in proposing
a modified expression for the shear viscosity; this gives a better fit for their data
of the grain temperature as a function of the shear rate. Making some simplifying
assumptions about the form of the temperature profile, they determine the velocity
profile with three adjustable parameters. It is shown that the profile provides a good
fit to their data for shear in a cylindrical Couette cell (see figure 11). However, their
solution is derived for plane shear, whereas the data they compare with (and achieve
a good fit) are for cylindrical Couette flow.

More importantly, it seems likely that the underlying assumptions of kinetic theory,
such as molecular chaos and instantaneous binary collisions, will break down in the
limit of small deformation rate and high solids fraction. Therefore, as in the case of
Savage’s model discussed above, it appears that the theory has been used beyond its
range of validity. Even if one were to just view the high-density kinetic theory as a
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phenomenological model, its applicability to slow granular flow is suspect as it does
not yield a rate-independent stress for small deformation rates.

10. Summary and conclusions
We have shown that our frictional Cosserat model for slow granular flows captures

the formation of thin shear layers in viscometric flows. The principal features of
our continuum model are: (i) the presence of a couple stress field, which is a result
of tangential frictional forces between grains; (ii) an angular velocity field which
is not necessarily determined by the local vorticity; (iii) solution of the balance of
angular momentum, in addition to the balances of mass and linear momentum;
(iv) the extension of the yield condition and flow rule used in classical plasticity to
incorporate the couple stress and the angular velocity. By including these features, we
incorporate a microscopic length scale in our model, which determines the thickness
of the shear layer.

For plane shear in the absence of gravity, we have considered two cases: in the first,
the two walls are of equal roughness, and in the second, the upper wall is smoother.
In the first, for which the shear rate is symmetric about the mid-plane, we find that
Cosserat effects (a finite couple stress, asymmetry of the Cauchy stress tensor and
deviation of the angular velocity from half the vorticity) are maximum near the solid
boundaries, and decay with distance from the boundaries. In the second case, the
couple stress is finite everywhere in the gap, but other Cosserat effects are absent.
In both cases, the velocity fields decay rapidly with distance from the upper wall if
the Couette gap is large compared to the grain size. If the roughness of the granular
medium is exactly equal to that of the wall, it shears uniformly in the entire gap.

For shear between walls of equal roughness in a gravitational field (and in cylindrical
Couette flow), the couple stress is finite throughout the Couette gap, but other Cosserat
effects are present only in the shear layer near the upper wall (inner cylinder). Here
too the velocity and angular velocities decay rapidly with distance from the upper wall
(inner cylinder). While experimental measurements of the couple stress or asymmetry
in the Cauchy stress have not been reported, our predictions are in good agreement
with the velocity measurements reported recently by Mueth et al. (2000) and Losert
et al. (2000).

If the wall roughness is less than that of the granular medium (i.e. tan δ < sinφ),
the shear layer thickness ∆ increases with the Couette gap, but reaches an asymptotic
value independent of the Couette gap in the limit H/dp → ∞ (H and dp are the
Couette gap and grain diameter, respectively). Further, ∆ decreases when the angle
of wall friction δ is reduced, and vanishes when the wall is perfectly smooth, in
qualitative agreement with available experimental data. In the singular case of fully
rough walls (tan δ = sinφ), the material shears uniformly over the entire Couette gap
for plane shear in the absence of gravity; for plane shear under gravity or cylindrical
Couette flow, ∆ increases with the Couette gap as (H/dp)

1/3, and does not depend
on φ.

Many of the above predictions regarding the behaviour of ∆ have so far not
been confirmed experimentally. We believe that these are important issues to be
probed in future experimental investigations, as they will serve to distinguish between
existing models for slow granular flows. Another prediction we make, also requiring
experimental verification, is that the shear layer is located near the lower wall (outer
cylinder) if it is sufficiently smoother than the upper wall (inner cylinder), and the
material elsewhere suffers little deformation.
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While the predictions of our model are for the particular forms of the constitutive
relations (namely the yield condition and the flow rule) and the boundary conditions
we have chosen, we believe that the main qualitative features of our results have
a general validity. For instance, the yield condition (2.4a) is a modification of the
extended von Mises yield condition, a relation between the first and second invariants
of σ; by incorporating the couple stress in this relation, we introduce a microscopic
length scale naturally into the constitutive relations. Any other yield condition, such
as that proposed by Lade & Duncan (1975) (extended to allow critical states) which
involves also the third invariant, could also be modified in the same spirit, and the
qualitative effect would be the same: the microscopic length scale will set the length
scale for the thickness of the shear layer.

In cylindrical Couette flow, our model predicts a small increase in the solids fraction
(depending on the magnitude of the Froude number C) as we move towards the outer
cylinder. This increase, however, is substantially smaller than what was observed in
the experiments of Mueth et al. (2000). This defect may perhaps be corrected by
incorporating elastic effects in the model, which is a direction worthy of further study.
For example, Tejchman & Gudehus (2001) have found that the use of a Cosserat
model based on hypoplasticity permits the density to vary across the shear layer.
Nevertheless, we believe that our model is a natural extension of classical plasticity
models for slow granular flows.

While the models of Losert et al. (2000) and Savage (1998) also attempt to explain
thin shear layers, they do not yield a rate-independent stress, which has shown to
be an important characteristic of slow flows. In any case, further experiments are
required to assess the performance of our model and others in various flow problems,
before attempting to decide which model, if any, is more realistic.

Appendix A. Asymptotic solution for small ε
To determine the asymptotic behaviour for small ε, we seek a perturbation solution

of the form

m = m(0) + εm(1) + ε2m(2) + · · · (A 1)

for the couple stress, and similarly for the other fields. For each of the problems
considered, we derive only the leading-order solutions of O(ε0) for the stress and
velocity fields, as they suffice to determine the shear layer thickness. However, we
ensure that the asymptotic expansion is uniformly valid by checking that the ratio
m(1)/m(0) is O(1) everywhere in the domain 0 < ξ < 1.

A.1. Plane shear in the absence of gravity

On substituting (A 1) in (5.3), we find that the leading-order solution for the stresses
is

σ̄(0)
xy = σ̄yx = − tan δ, (A 2a)

m(0) = m0 ≡
√
b2 − a2, (A 2b)

and the solutions at all higher orders in ε vanish. The constants a and b are defined
in (5.4). This asymptotic solution is valid only in the outer region ξ − 1/2 � ε; in
the inner region (ξ − 1/2) ∼ ε, m deviates from m0 to satisfy (5.1a), as evident from
the exact solution (5.5). For fully rough walls, m0 = 0, and hence (A 2) is a uniformly
valid solution as it satisfies the boundary condition m(1/2) = 0.
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The ω and u fields in the outer region are obtained from (3.17)–(3.18) and (A 2),
yielding

ω =
−1/2

ε(K + 2/k)
exp(−k(1− ξ)/ε), (A 3a)

u =
1

2

(
1 +

2/k

(K + 2/k)
exp(−k(1− ξ)/ε)

)
, (A 3b)

where k is defined in (5.8d). Thus, the linear and angular velocities decay rapidly with
distance from the walls. The variation of m within the inner region near ξ = 1/2
has little influence on the velocity and fields, as they are negligibly small within this
region.

When the two walls are of different roughness, the exact solution is given in § 5.1.
The couple stress is constant, m = m0, regardless of ε, and the solutions for ω and u
given in (5.8b) reduce in the asymptotic limit to

ω =
−1

ε(K + 2/k)
exp(−k(1− ξ)/ε), (A 4a)

u =
2/k

(K + 2/k)
exp(−k(1− ξ)/ε). (A 4b)

It should be noted that if the couple stress at the lower wall is changed by replacing
(4.4) with an alternative boundary condition (see § 4), the asymptotic solution for m
in the outer region ξ � ε will still be m = m0, but the solution in the inner region
ξ ∼ ε will be different. However, the velocity fields are affected only by the couple
stress in the outer region, as they decay rapidly with distance from the upper wall,
and therefore the boundary condition for m at ξ = 0 does not influence the velocity
profile in the limit ε→ 0.

A.2. Plane shear under gravity

An equation for the couple stress, similar to (5.3) for zero gravity, can be obtained by
combining the yield condition and the angular momentum balance, to give

αε
dm

dξ
= −a+ (b2 + c2[(1 + Bν(1− ξ))2 − 1]− m2)1/2, (A 5)

where c2 = sin2 φ/(2A+ 2), and a and b are defined in (5.4).
Substituting (A 1) in (A 5), the solution at the first two orders in ε is

m(0) = (m2
0 + c2[(1 + Bν(1− ξ))2 − 1])1/2, (A 6a)

m(1) =
ac2α

m(0)2
[B2ν2(1− ξ) + Bν], (A 6b)

with m0 defined in (A 2b). Unlike in §A.1, the expression for m(0) above is valid in the
entire domain 0 < ξ < 1, as it satisfies the boundary condition (4.4) at the lower wall.
To determine if the expansion is uniformly valid, we inspect the ratio εm(1)/m(0). When
tan δ < sinφ, the ratio is O(ε). Thus the above asymptotic expansion is uniformly
valid when the walls are not fully rough. The leading-order solutions for the velocity
and angular velocity, obtained by integrating (3.17) and (3.18), are

ω(0) = ω1 exp

−k
ε

∫ 1

ξ

(
1 +

(
c

m0

)2

[(1 + Bν(1− ξ′))2 − 1]

)1/2

dξ′
 , (A 7a)
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u(0) = −2

∫ ξ

0

ω(ξ′) dξ′, (A 7b)

where ω1 = ω(1) and k is defined in (5.8d). To simplify the above expressions, we
anticipate the rapid decay of the velocity within a region of thickness O(ε) from the
upper wall, substitute ξ̄ = (1−ξ)/ε and expand in ε. Retaining only the leading-order
terms for consistency, we obtain expressions for the velocity fields which are identical
to (A 4), the latter corresponding to shear in the absence of gravity.

For the singular case of fully rough walls (tan δ = sinφ), m(0)(1) = 0. Hence
the asymptotic expansion (A 6) is not valid in a region near the upper wall where
(1− ξ) ∼ ε2/3, because the ratio εm(1)/m(0) is O(1) within this region. Noting that the
scaling for the latter is exactly what we obtained for flow through a vertical channel
(Mohan et al. 1999), we follow the same procedure to determine a uniformly valid
asymptotic expansion in the entire domain 0 < ξ < 1.

To determine the solution within the inner region near the upper wall, we follow
the prescription of Van Dyke (1964, pp. 20 and 569) and introduce the following
rescaled variables:

ξ̂ = (1− ξ)ε−2/3

(
L2

2Bν

)−1/3

, m̂ = mε−1/3(4aαBνc2)−1/3, (A 8)

and seek a solution a solution of the form m̂ = m̂(0) +f(ε)m̂(1) + · · ·. Upon substituting
the above in (A 5), we get at leading order

−dm̂(0)

dξ̂
+ (m̂(0))2 − ξ̂ = 0. (A 9)

This is a Riccati equation, whose solution can be written in terms of the Airy functions
(Bender & Orszag 1984, pp. 20, 569),

m̂(0) = − d

dξ̂
ln(c1Ai(ξ̂) + c2Bi(ξ̂)). (A 10)

where Ai(ξ̂) and Bi(ξ̂) are the two independent Airy functions and c1 and c2 are
constants of integration. The constants are determined by matching the inner and
outer solutions in an overlap region, as suggested by Van Dyke (1964, p. 105). Upon

writing the outer solution (A 6a) in terms of the inner variable ξ̂ and expanding for

small ε, we determine the leading-order term to be (4aαBνc2)1/3ε1/3ξ̂1/2. This must
match with the leading-order outer expansion of the inner solution, which is

−(4aαBνc2)1/3ε1/3ξ̂1/2 if c1 = 0, (4aαBνc2)1/3ε1/3ξ̂1/2 if c2 = 0. (A 11)

Hence c2 = 0 and the solution at leading order in the inner region is

m(0) = −ε1/3 (4aαBνc2)1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂)), (A 12)

from which we may derive the uniformly valid (additive) composite solution in the
entire domain,

m(0) = c([1+Bν(1−ξ)]2−1)1/2−ε1/3 (4aαBνc2)1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂))−(2Bνc2(1−ξ))1/2. (A 13)

In the same manner, the uniformly valid solutions for the velocity fields at the leading
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order are found to be

ω = ω1

(
Ai(ξ̂)

Ai(0)

)2

, u− u1 = ε2/3
(
L2

2Bν

)1/3

2ω1I(ξ̂), (A 14a, b)

where ω1 = ω(1), u1 = u(1) and

I(ξ̂) ≡ (Ai(0))−2

∫ ξ̂

0

(Ai(z))2dz. (A 15)

Enforcing the boundary condition u(0) = 0 and the velocity boundary condition (4.6)
at the upper wall, the angular velocity and velocity at the wall can be determined,
giving to leading order

ω1 =
−ε−2/3

2

(
L2

2Bν

)−1/3
1

I(∞)
, u1 = 1. (A 16a, b)

The uniformly valid velocity profile to leading order therefore is

u = 1− I(ξ̂)/I(∞). (A 17)

A.3. Cylindrical Couette flow

Subtracting (6.11) from (6.9) and integrating, we obtain the following relation between
the shear stress σ̄rθ and the couple stress:

σ̄rθ =
− tan δ

(1 + ξ/R̄i)2
+ 2(A+ 1)εα

(
m

(R̄i + ξ)
− m(0)R̄i

(R̄i + ξ)2

)
. (A 18)

At O(ε0), (6.11) and (A 18) result in σ̄θr = σ̄rθ = −tan δ/(1 + ξ/R̄i)
2, which when

substituted in the yield condition (6.5) gives the leading-order couple stress,

m(0) = −
(
m2

0 + d2

[
1− 1

(1 + ξ/R̄i)4

])1/2

(A 19)

where d2 = tan2 δ/2(A+ 1). At O(ε), (6.5) and (6.11), together with (A 18), yield

m(1) =
aα

(m(0))2R̄i(1 + ξ/R̄i)3

(
m2

0 + d2

[
1− 3

(1 + ξ/R̄i)4

])
− 2aαm(0)(0)

m(0)R̄i(1 + ξ/R̄i)4
.

(A 20)

Here too εm(1)/m(0) ∼ O(ε), except when tan δ = sinφ. Therefore the above expansion
is uniformly valid when the wall is not fully rough. On integrating (6.6)–(6.7) and
expanding the results for the region ξ ∼ ε near the inner cylinder, we see that the
leading-order velocity fields are again identical to (A 4).

As in §A.2, the above asymptotic expansion for m is not uniformly valid when the
inner cylinder is fully rough, as the ratio εm(1)/m(0) is O(1) in the inner region ξ ∼ ε2/3.
A solution in the inner region may be found by re-scaling the variables,

ξ̂ = ξε−2/3

(
L2R̄i

4

)−1/3

, m̂ =
m

d
ε−1/3

(
4L

R̄i

)−1/3

, (A 21)

yielding the following equation for m̂(0):

dm̂(0)

dξ̂
+ (m̂(0))2 − ξ̂ = 0. (A 22)



408 L. S. Mohan, K. K. Rao and P. R. Nott

Following the procedure given in §A.2, the uniformly valid expression for the couple
stress is

m(0) = −d
(

1− 1

(1 + ξ/R̄i)4

)1/2

+ ε1/3
d(4L/R̄i)

1/3

Ai(ξ̂)

d

dξ̂
(Ai(ξ̂)) + d(4ξ/R̄i)

1/2, (A 23)

and for velocity fields is

ω =
−ε−2/3

2

(
L2R̄i

4

)−1/3
1

I(∞)

(
Ai(ξ̂)

Ai(0)

)2

, (A 24a)

u = −1 + I(ξ̂)/I(∞), (A 24b)

where I(ξ̂) is defined by (A 15).
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Mühlhaus, H. B. 1989 Application of cosserat theory in numerical solution of limit load problems.
Ing. Arch. 59, 124–137.
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